Multi-agent Perspective of Fake Feedback Attacks on Stochastic Multi-armed Bandits

Charles A. N. Costa, Célia Ghedini Ralha

Computer Science Department University of Brasília

Agenda

- Introduction.
- Contributions.
- Adversarial vs Fake feedback.
- Agent roles.
- Fake feedback Attacks.
- Experiments.
- Conclusions.

Introduction

- Multi-armed bandits (MAB) To balance exploration and exploitation.
- Well-known stochastic MAB: ϵ -Greedy and UCB1.
- Stochastic MAB are vulnerable to data poisoning attacks.
- Many studies focus only on adversarial attacks when an attacker controls the reward delivery mechanism (generality).
- Just a few approaches to this problem as a Multi-agent problem, although roles, goals, intentions, behavior, and capacities emerge from definitions.

Contributions

- Main contribution: Our main contribution is the analysis of attacks on stochastic MAB from a multi-agent perspective.
- Secondary contributions:
 - Describe four fake-feedback attacks using our framework.
 - Present data from synthetic experiments.

Adversarial vs Fake feedback

Agent roles

- Learner

- Goal: Collect reward from arms (options).
- Applies a MAB policy $\pi(B_l, t)$.
- Attacker
 - Goal: Manipulate the learner to increase target arm pulls.
 - Applies attack policy $\rho(B_A, k_T, t)$.
- Witnesses
 - Goal: Collect reward from arms (options).
- Co-opted witnesses
 - Goal: Help the attacker manipulate the learner.
 - Follow attacker instructions to corrupt reward reports.

Attacks – Constant and Adaptive Attack

- Constant Attack
 - Idea: Attack every arm but the target arm with a constant C.
 - Advantages
 - Straightforward.
 - Fixed cost.
 - Disadvantages: Need to fix C in advance.
- Adaptive Attack
 - Idea: Adjust corruption level to keep target arm pulls between a range.
 - Advantages
 - Simple.
 - Tends to be less costly than the Constant attack.
 - Disadvantage: More parameters than the Constant attack.

Jun's Adversarial relaxed attacks

- Jun et al. (2018). Adversarial attacks on stochastic bandits. In *Advances in Neural Information Processing Systems*.
- Original idea: Carefully craft the corruption level to minimize cost and maximize manipulation.
- Not agnostic. Defined to $\epsilon\text{-}\mathsf{Greedy}$ and UCB1.
- Need to know in advance: next pulled arm, next pulled arm reward value, the learner's policy.
- Relaxations
 - Use an unbiased estimator, like sample mean, instead of the next reward value.
 - Attack all arms but the target arm!
- Incurs a higher cost than the no-relaxed version (weaker!).

Experiments - Set up

- MAB: UCB1 and ϵ -Greedy.
- Attacks: Constant, two set-ups adaptive, Jun's adversarials relaxed.
 - Constant: C = 1.
 - Adaptive 1, ranging (0.4, 0.6).
 - Adaptive 2, ranging (0.8, 0.9).
 - Two Jun's attacks.
- Baseline: No attack.
- Execution:
 - 5 arms from three reward classes:
 - A1: $\mathcal{N}(0.9, 0.1)$.
 - B1 and B2: $\mathcal{N}(0.85, 0.30)$.
 - C1 and C2: $\mathcal{N}(0.75, 0.50)$.
 - Target arm: C2.
 - Witnesses: 9 (10 players counting the learner).
 - Co-opted witnesses: 5.
 - 2000 rounds.
 - 30 repetition.
- Source code: github.com/charlesANC/BanditsExperiment

Experiments - Performance measures

- 1 Regret $R_L(T)$
 - Estimate the maximum reward the Learner could achieve and subtract the actual accumulated reward.
- 2 Total corruption level C(T)
 - Sum all the corruption in co-opted witnesses' reports.
- 3 Achieved Pulls AP(T)
 - Increase in the target arm pulls when compared to a zero-corruption scenario.
- 4 Cost per Achieved pull CP(T).
 - Divide Total corruption level by Achieved pulls.

Experiments - Outcomes

MAB	Attack	$\mathbf{R}_{\mathbf{L}}(\mathbf{T})$	$\mathbf{N}(\mathbf{k_t},\mathbf{T},\mathbf{C}(\mathbf{T}))$	AP(T)	C(T)	CP(T)
UCB1	-	70.93	131.50	-	-	-
		(8.77)	(9.70)			
UCB1	Constant	297.20	1,889.07	1,757.57	51,549.73	29.33
		(21.42)	(1.69)	(10.03)	(68.40)	(0.18)
UCB1	Adaptive 1	216.34	1,164.87	1,033.37	19,769.67	19.11
		(24.91)	(134.40)	(135.04)	(3,620.93)	(2.51)
UCB1	Adaptive 2	275.42	1,668.43	1,536.93	30,803.83	20.04
		(24.39)	(24.99)	(27.41)	(1,565.36)	(0.89)
UCB1	Jun's relaxed	181.52	679.83	548.33	13,601.23	25.04
		(19.12)	(77.59)	(78.79)	(1,271.82)	(2.18)
ϵ -Greedy	-	31.45	79.67		-	-
		(8.96)	(8.83)			
ϵ -Greedy	Constant	274.45	1,673.80	1,594.13	51,581.90	33.45
		(23.26)	(13.08)	(15.41)	(68.72)	(0.30)
ϵ -Greedy	Adaptive 1	180.72	1,032.57	952.90	17,421.66	20.12
		(38.44)	(246.09)	(244.51)	(8,252.80)	(9.58)
ϵ -Greedy	Adaptive 2	269.08	1,594.90	1,674.57	50,468.31	31.65
		(21.88)	(18.22)	(18.74)	(3,910.64)	(2.48)
ϵ -Greedy	Jun's relaxed	268.87	1,638.10	1,594.90	185,662.13	123.55
		(20.86)	(37.38)	(38.61)	(26,423.06)	(19.79)

Table 2. Resumed measures over MAB algorithms and attacks. The values represent the mean with the standard variation in parentheses.

MAB-Fake feedback-MAS - Experiments - Outcomes

Experiments - Outcomes

Figure 3. Cost of corruption over MAB algorithms and attacks.

MAB-Fake feedback-MAS - Experiments - Outcomes

Conclusions

- This paper emphasized understanding the problem of fake feedback attacks on stochastic MAB within a MAS framework.
- Our findings suggest that agnostic attacks could be effective against UCB1 and e-Greedy, even compared to policy-based attacks.
- Future work should focus on developing effective defenses against fake feedback attacks that consider the MAS perspective.

Thank you!

charles.costa@aluno.unb.br ghedini@unb.br

MAB-Fake feedback-MAS - Thank you!