Multi-agent System Architectural Aspects for Continuous Replanning

Carlos Joel Tavares da Silva¹, Célia Ghedini Ralha¹

¹Computer Science Department – Exact Sciences Institute University of Brasília Campus Darcy Ribeiro 70.904-970 Brasília, Brazil

Workshop-School on Agents, Environments, and Applications, August 2024

- 2 Architectural Aspects
- **Experiments** 3

da Silva, Carlos and Ralha, Célia (UnB)

da Silva, Carlos and Ralha, Célia (UnB)

- (日)

Introduction Contextualization

Figure: NASA's Perseverance rover. Source: NASA/JPL-Caltech.

da Silva, Carlos and Ralha, Célia (UnB)

MAS Architectural Aspects for CR

WESAAC 2024

 Multi-robot Systems (MRS) are complex and challenging to implement in real-world environments.
 [Klavins, 2004, Aziz et al., 2021]

- Multi-robot Systems (MRS) are complex and challenging to implement in real-world environments. [Klavins, 2004, Aziz et al., 2021]
- It's difficult to anticipate all environmental changes before deployment, making coordination of heterogeneous robots a demanding task.

- Multi-robot Systems (MRS) are complex and challenging to implement in real-world environments.
 [Klavins, 2004, Aziz et al., 2021]
- It's difficult to anticipate all environmental changes before deployment, making coordination of heterogeneous robots a demanding task.
- Automated Planning (AP) is a potential solution for optimal plan creation and recovery in case of failures, especially in dynamic environments.

- Multi-robot Systems (MRS) are complex and challenging to implement in real-world environments.
 [Klavins, 2004, Aziz et al., 2021]
- It's difficult to anticipate all environmental changes before deployment, making coordination of heterogeneous robots a demanding task.
- Automated Planning (AP) is a potential solution for optimal plan creation and recovery in case of failures, especially in dynamic environments.
- In space robotics, multi-robot planning is vital for improving efficiency, reliability, and productivity in missions, allowing specialized robots to work together and ensuring continuity even if one robot fails.

• Traditional planning methods focus on internal actions, but MRS requires solutions that address dynamic environments and exogenous actions, leading to a need for plan recovery.

6 / 26

WESAAC 2024

- Traditional planning methods focus on internal actions, but MRS requires solutions that address dynamic environments and exogenous actions, leading to a need for plan recovery.
- There is ongoing research on coordination and planning in MRS, focusing on aspects like goal decomposition, task allocation, probabilistic and temporal planning, and interactive coordination of heterogeneous teams. [Cashmore et al., 2015, González et al., 2020, Bischoff et al., 2021, Martín et al., 2021, Lesire et al., 2022]

- Traditional planning methods focus on internal actions, but MRS requires solutions that address dynamic environments and exogenous actions, leading to a need for plan recovery.
- There is ongoing research on coordination and planning in MRS, focusing on aspects like goal decomposition, task allocation, probabilistic and temporal planning, and interactive coordination of heterogeneous teams. [Cashmore et al., 2015, González et al., 2020, Bischoff et al., 2021, Martín et al., 2021, Lesire et al., 2022]
- However, research that focus on plan recovery in dynamic environments are still scarce

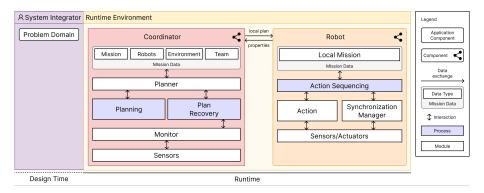
- Traditional planning methods focus on internal actions, but MRS requires solutions that address dynamic environments and exogenous actions, leading to a need for plan recovery.
- There is ongoing research on coordination and planning in MRS, focusing on aspects like goal decomposition, task allocation, probabilistic and temporal planning, and interactive coordination of heterogeneous teams. [Cashmore et al., 2015, González et al., 2020, Bischoff et al., 2021, Martín et al., 2021, Lesire et al., 2022]
- However, research that focus on plan recovery in dynamic environments are still scarce
- The main contribution of this work is the implementation of a MAS for simulating a robotic space mission, with code shared for open science.

da Silva, Carlos and Ralha, Célia (UnB)

< 行

• Architecture defined in my Masters.

- Architecture defined in my Masters.
- Experiments with ROS in a Healthcare case where already done [da Silva and Ralha, 2023]



- Architecture defined in my Masters.
- Experiments with ROS in a Healthcare case where already done [da Silva and Ralha, 2023]
- Experiments comparing to another framework/architecture [Martín et al., 2021] were done to test our approach

- Architecture defined in my Masters.
- Experiments with ROS in a Healthcare case where already done [da Silva and Ralha, 2023]
- Experiments comparing to another framework/architecture [Martín et al., 2021] were done to test our approach
- The Idea was to show details of the plan recovery process and test in other domains without ROS

Figure: The high-level architecture.

イロト イボト イヨト イヨ

UnB

Vesaac ←

Plan Recovery

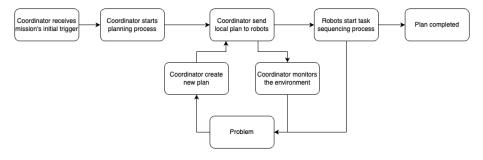
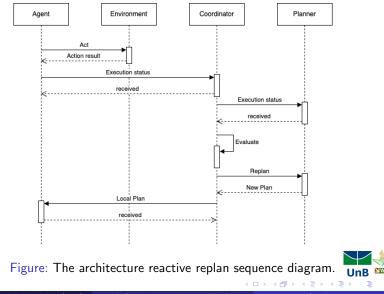



Figure: The solution's execution process.

Plan Recovery

da Silva, Carlos and Ralha, Célia (UnB)

MAS Architectural Aspects for CR

WESAAC 2024

11 / 26

esaac €

Plan Recovery

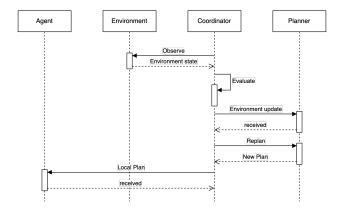


Figure: The architecture proactive replan sequence diagram.

12 / 26

< 行

- 2 Architectural Aspects
- 3 Experiments

< 円

• The main goal of the experiments is to describe and validate the strategy of the architecture's plan recovery process [da Silva, 2024]

- The main goal of the experiments is to describe and validate the strategy of the architecture's plan recovery process [da Silva, 2024]
- This work uses the Space Resource Gathering (SRG) on planet exploration illustration example

- The main goal of the experiments is to describe and validate the strategy of the architecture's plan recovery process [da Silva, 2024]
- This work uses the Space Resource Gathering (SRG) on planet exploration illustration example
- The SRG includes three robot types:
 - Scout: can map the environment looking for resources
 - Gatherer can collect the found resources
 - Remover can remove obstacles

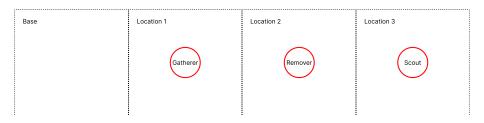


Figure: Example of a simulation map.

15 / 26

WESAAC 2024

- 5 different scenarios (probability of problem occurring)
 - 10%
 - 30%
 - 50%
 - 70%
 - 100%

- 5 different scenarios (probability of problem occurring)
 - 10%
 - 30%
 - 50%
 - 70%
 - 100%
- 30 executions each

- 5 different scenarios (probability of problem occurring)
 - 10%
 - 30%
 - 50%
 - 70%
 - 100%
- 30 executions each
- Metrics:
 - Number of executions that ended with success, replan, or failure
 - Execution time

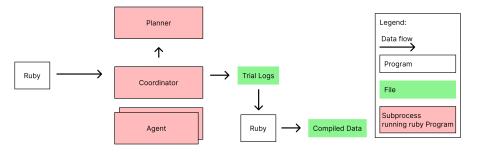


Figure: Experimental process.

17 / 26

WESAAC 2024

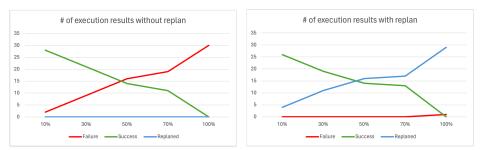


Figure: Without replan

Figure: With replan

Experiments Results - Execution time (s)

Figure: Without replan

Figure: With replan

19 / 26

da Silva, Carlos and Ralha, Célia (UnB)

Introduction

- 2 Architectural Aspects
- 3 Experiments

- (日)

• The experiments validate the proposed MAS architecture from [da Silva, 2024]

- The experiments validate the proposed MAS architecture from [da Silva, 2024]
- The SRG example demonstrates the architecture's plan recovery capabilities in a simulated space robotics scenario

- The experiments validate the proposed MAS architecture from [da Silva, 2024]
- The SRG example demonstrates the architecture's plan recovery capabilities in a simulated space robotics scenario
- Future work will focus on improving the architecture with sophisticated heuristic algorithms (BDI Agents, Team composition), decentralized Coordination, and experiments in other domains

- The experiments validate the proposed MAS architecture from [da Silva, 2024]
- The SRG example demonstrates the architecture's plan recovery capabilities in a simulated space robotics scenario
- Future work will focus on improving the architecture with sophisticated heuristic algorithms (BDI Agents, Team composition), decentralized Coordination, and experiments in other domains
- Future research will also involve experiments with larger numbers of robots, integrating advanced planning algorithms, and finding suitable benchmarks for multi-agent planning to compare with existing work.

Aziz, H., Chan, H., Cseh, A., Li, B., Ramezani, F., and Wang, C. (2021).
 Multi-robot task allocation-complexity and approximation.
 In Proc. of 20th Int. Conf. on Autonomous Agents and MultiAgent Systems (AAMAS), page 133–141.

Bischoff, E., Teufel, J., Inga, J., and Hohmann, S. (2021).
Towards interactive coordination of heterogeneous robotic teams – introduction of a reoptimization framework.
In Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC),

22 / 26

pages 1380–1386.

References II

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carreraa, A., Palomeras, N., Hurtós, N., and Carrerasa, M. (2015). ROSPlan: Planning in the robot operating system. In *Proc. of 35th Int. Conf. on Automated Planning and Scheduling* (*ICAPS*), page 333–341.

🔋 da Silva, C. J. T. (2024).

A multi-robot system architecture with multi-agent planning. Computer Science Department, University of Brasilia, Campus Darcy Ribeiro - Asa Norte, Brasília - DF, 70910-900, Brazil.

da Silva, C. J. T. and Ralha, C. G. (2023).

Multi-robot system architecture focusing on plan recovery for dynamic environments.

WESAAC 2024

23 / 26

In 2023 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1668–1673.

González, J. C., García-Olaya, A., and Fernández, F. (2020). Multi-layered multi-robot control architecture for the robocup logistics league.

In Proc. of IEEE Int. Conf. on Autonomous Robot Systems and Competitions, pages 120–125.

Klavins, E. (2004). Communication Complexity of Multi-robot Systems, pages 275–291. Springer, Berlin, Heidelberg.

Lesire, C., Bailon-Ruiz, R., Barbier, M., and Grand, C. (2022). A hierarchical deliberative architecture framework based on goal decomposition.

In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 9865–9870.

24 / 26

WESAAC 2024

Martín, F., Clavero, J. G., Matellán, V., and Rodríguez, F. J. (2021). PlanSys2: A planning system framework for ROS2. In *Proc. of IEEE Int. Conf. on Intelligent Robots and Systems (IROS)*, page 9742–9749.

25 / 26

WESAAC 2024

Thank you

Questions? Suggestions?

carlosjoel.tavares@gmail.com

26 / 26

da Silva, Carlos and Ralha, Célia (UnB) MAS Architectural Aspects for CR